Deep Transcriptomic Profiling of M1 Macrophages Lacking Trpc3
نویسندگان
چکیده
In previous studies using mice with macrophage-specific loss of TRPC3 we found a significant, selective effect of TRPC3 on the biology of M1, or inflammatory macrophages. Whereas activation of some components of the unfolded protein response and the pro-apoptotic mediators CamkII and Stat1 was impaired in Trpc3-deficient M1 cells, gathering insight about other molecular signatures within macrophages that might be affected by Trpc3 expression requires an alternative approach. In the present study we conducted RNA-seq analysis to interrogate the transcriptome of M1 macrophages derived from mice with macrophage-specific loss of TRPC3 and their littermate controls. We identified 160 significantly differentially expressed genes between the two groups, of which 62 were upregulated and 98 downregulated in control vs. Trpc3-deficient M1 macrophages. Gene ontology analysis revealed enrichment in processes associated to cellular movement and lipid signaling, whereas the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included networks for calcium signaling and cell adhesion molecules, among others. This is the first deep transcriptomic analysis of macrophages in the context of Trpc3 deficiency and the data presented constitutes a unique resource to further explore functions of TRPC3 in macrophage biology.
منابع مشابه
Reduced Necrosis and Content of Apoptotic M1 Macrophages in Advanced Atherosclerotic Plaques of Mice With Macrophage-Specific Loss of Trpc3
In previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages,...
متن کاملReduced endoplasmic reticulum stress-induced apoptosis and impaired unfolded protein response in TRPC3-deficient M1 macrophages.
Endoplasmic reticulum (ER) stress is a prominent mechanism of macrophage apoptosis in advanced atherosclerotic lesions. Recent studies from our laboratory showed that advanced atherosclerotic plaques in Apoe(-/-) mice with bone marrow deficiency of the calcium-permeable channel Transient Receptor Potential Canonical 3 (TRPC3) are characterized by reduced areas of necrosis and fewer apoptotic ma...
متن کاملTranscriptomic Profiling of the Development of the Inflammatory Response in Human Monocytes In Vitro
Monocytes/macrophages are key players in all phases of physiological and pathological inflammation. To understanding the regulation of macrophage functional differentiation during inflammation, we designed an in vitro model that recapitulates the different phases of the reaction (recruitment, initiation, development, and resolution), based on human primary blood monocytes exposed to sequential ...
متن کاملFunctional analysis and transcriptomic profiling of iPSC-derived macrophages and their application in modeling Mendelian disease.
RATIONALE An efficient and reproducible source of genotype-specific human macrophages is essential for study of human macrophage biology and related diseases. OBJECTIVE To perform integrated functional and transcriptome analyses of human induced pluripotent stem cell-derived macrophages (IPSDMs) and their isogenic human peripheral blood mononuclear cell-derived macrophage (HMDM) counterparts ...
متن کاملTranscriptomic Analysis of Human Polarized Macrophages: More than One Role of Alternative Activation?
BACKGROUND Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1) or alternatively activated macrophages (M2). This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017